The Discriminate Analysis and Dimension Reduction Methods of High Dimension
نویسندگان
چکیده
منابع مشابه
dedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولAnalysis of Correlation Based Dimension Reduction Methods
Dimension reduction is an important topic in data mining and machine learning. Especially dimension reduction combined with feature fusion is an effective preprocessing step when the data are described by multiple feature sets. Canonical Correlation Analysis (CCA) and Discriminative Canonical Correlation Analysis (DCCA) are feature fusion methods based on correlation. However, they are differen...
متن کاملNon parametric feature discriminate analysis for high dimension
A method for the linear discrimination of non parametric binary classification is presented. It searches for the discriminate direction which maximizes the generalized Patrick-Fischer distance between the projected classconditional densities. The theoretical background is introduced with a new estimator using orthogonal function according to the Patrick-Fischer distance that gives the best scal...
متن کاملFeature Extraction and Efficiency Comparison Using Dimension Reduction Methods in Sentiment Analysis Context
Nowadays, users can share their ideas and opinions with widespread access to the Internet and especially social networks. On the other hand, the analysis of people's feelings and ideas can play a significant role in the decision making of organizations and producers. Hence, sentiment analysis or opinion mining is an important field in natural language processing. One of the most common ways to ...
متن کاملScalable High Performance Dimension Reduction
Dimension reduction is a useful tool for visualization of such high-dimensional data to make data analysis feasible for such vast volume and high-dimensional scientific data. Among the known dimension reduction algorithms, multidimensional scaling algorithm is investigated in this proposal due to its theoretical robustness and high applicability. Multidimensional scaling is known as a non-linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Journal of Social Sciences
سال: 2015
ISSN: 2327-5952,2327-5960
DOI: 10.4236/jss.2015.33002